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Abstract

Maps provide information and knowledge about the world. However, the diver-
sity of map types as well as the wide range of map styles and thematic/temporal
contexts make it challenging for non-experts in the field (i.e., non-cartographers)
to easily identify and understand maps when lacking sufficient data sources. This
is especially true for historical maps, as they often feature non-standard projec-
tions as well as hand-drawn styles and are usually more artistic than modern
maps. Even though state-of-the-art image captioning methods such as CLIP and
ClipCap are promising, for historical maps, they generate captions that are ei-
ther too simple, too general, or even wrong. To address these challenges, this
project focused on exploring Generative Pre-trained Transformer (GPT) models
and fine-tuning existing image captioning methods for map storytelling. Given
a historical input map (topographic or pictorial), a caption answering the ques-
tions Where?, What?, When? and Why? should be generated. A decision tree
structure-based method combining fine-tuned CLIP models, and the generative
capabilities of GPT was developed. The results reveal that this approach, despite
the limited dataset, outperforms CLIP in terms of prediction accuracy overall by
34 percentage points, corresponding to an over 72% boost in performance. Pro-
vided that the content of the historical input map can be described by the present
caption category classes, this method is capable of describing it with respectable
accuracy in a storytelling fashion and could serve as a basis for future historical
map captioning systems.
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Chapter 1

Introduction

This chapter provides an introduction to the topic by first explaining the mo-
tivation and challenges behind it. Afterwards, the overall problem is presented
and the objectives of this project are listed. The chapter concludes with a brief
overview of the content covered in this report.

1.1 Motivation

There is a wide range of different map types, such as topographic and thematic
maps, that allow people to learn more about the geography, history and culture
of a particular location at a specific time. However, not only are the map types
very diverse, but so are the map styles, layouts, and thematic/temporal contexts.
For this reason, it can be difficult for people who are not experts in the field
(i.e., non-cartographers) to correctly identify and understand maps, which is
especially true for historical maps. Compared to modern maps, historical maps
often contain less accurate geographic information, varying artistic or religious
symbols and legends, non-standard projections, and hand-drawn styles, which
makes it even more challenging to quickly capture key information in maps from
different eras.

Image captioning provides descriptions for images in natural language, bridging
the gap between visual and textual information. It serves as a powerful tool in
various situations, including content understanding for individuals with visual
impairments, image tagging for database management, efficient search and re-
trieval of images, etc. Recent advances in image captioning methods such as
CLIP1(Ilharco et al., 2021) and ClipCap2 (Mokady et al., 2021) are promising to
help overcome the challenges faced by non-domain experts in interpreting histor-
ical maps as they make it possible to automatically classify and describe images.
These methods, combined with GPT models pre-trained on large datasets con-
sisting of texts from books, articles, and websites are able to generate meaningful

1Contrastive Language-Image Pre-Training
2CLIP Prefix for Image Captioning

1



1. Introduction 2

text that matches the input images. CLIP is designed to understand the connec-
tions between texts and images using contrastive learning, which can be used for
zero-shot text prediction of images. Built on top of CLIP, ClipCap is designed
especially for image captioning. It uses a fine-tuned language model and can au-
tomatically generate natural language descriptions for images without additional
information.

1.2 Problem statement

Even though the state-of-the-art image captioning methods mentioned above are
promising, their limitations become apparent when the input image is a histor-
ical map. The captions automatically generated by for example ClipCap are
either too simple, too general, or even wrong. Table 1 below shows two input
maps from the David Rumsey Historical Map Collection (Rumsey, David, and
Cartography Associates, 2024) and corresponding output captions generated by
ClipCap.

Input

Output
An old map of the world is
shown with a bridge in the

background.

An old book with a map and
a clock on it.

Table 1: Two maps captioned by ClipCap.

As one can see, the results are only partially correct. ClipCap has correctly
recognized in both cases that the image content is a map, but the remaining
information is not useful. Neither does it understand the subject of the map on
the left, nor does it understand which area the map on the right depicts. Fur-
thermore, the words bridge or clock would certainly confuse people when reading
such a caption. Therefore, it can be said that the current captioning methods
are not fully capable of producing accurate captions for historical maps.
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1.3 Objectives

The main goal of this project is to explore and fine-tune image captioning and
GPT models for map storytelling, where given a historical input map, the model
should generate a caption answering the following questions:

1. Where? The area which is depicted on the input map.

2. What? The map type as well as the pictorial map topic and topographic
map style.

3. When? The century in which the topographic map was created.

4. Why? The purpose of the map.

The focus will be set on topographic maps created between the 16th and 19th
century, and pictorial maps featuring different topics.

1.4 Content overview

This project report first covers the relevant theory and related work. Afterwards,
the methodology is presented, which includes the procedure for creating a map
dataset with corresponding ground-truth captions and the process of develop-
ing the map storytelling method with in-depth explanations of code. Later on,
all results are discussed, and possible consequences and limitations are pointed
out.



Chapter 2

Theory and Related Work

This chapter explores relevant deep learning methods for historical map story-
telling and explains two advancements and suitable models in image captioning
in detail, i.e., CLIP and ClipCap. In the end, this chapter covers Generative
Pre-trained Transformer (GPT) models, particularly Text-davinci-003, GPT-3.5-
turbo, and GPT-4, detailing their capabilities and applications in natural lan-
guage processing.

The diverse styles of maps, ranging from topographic maps to pictorial maps,
can significantly aid people in understanding map content, but their variety also
presents challenges for automatic map interpretation and classification. The dis-
tinction of map styles is helpful for further effective map analysis. The study
by Zhou et al. (2018) uses state-of-the-art deep convolutional neural networks
(CNNs) for automatic map-type classification. A dataset of seven categories of
map types was employed, including topographic maps, terrain maps, physical
maps, urban scene maps, national maps, 3D maps, etc. Another research by
Raimund Schnürer and Hurni (2021) distinguishes maps from images and then
separates pictorial maps from others to conduct object identification and classi-
fication within pictorial maps using CNNs.

To achieve optimal results for deep learning methods, a substantial amount of
training data is essential for training. There are several data augmentation meth-
ods. Yingjie Hu and Li (2022) developed a GIS-based data augmentation method
that can generate labeled training map images from shapefiles, which can be used
to enrich metadata concerning spatial extents and place names.

Regarding the content of maps, deep learning models also have shown their ca-
pabilities in understanding detailed aspects of maps. Touya et al. (2020) used
convolutional neural networks trained with maps, showcasing promising results
in inferring labels of the map including boundaries, cities, hydrography, etc.,
and the extent of the map including World, Europe, France, and Paris. Re-
cent advancements in image captioning technologies, which utilize one pipeline
for understanding and integrating map contents, show considerable promise in
generating comprehensive and coherent outputs from map data.

4



2. Theory and Related Work 5

2.1 Image captioning

Image captioning is the task of generating a natural language description of a
given image. It lies in the fields of both computer vision and natural language
processing, which involves understanding the content of the image and turning
the visual information into textual representations. This process is crucial to map
storytelling, as it relies on accurate extraction and interpretation of key features
of a map and constructs a compelling story.

2.1.1 CLIP

CLIP (Radford et al., 2021) is a neural network that can predict the most relevant
text snippet as the label for an image. As shown in Figure 1, it applies a text
transformer model as the text encoder and a ResNet or Vision Transformer as
the image encoder, and jointly trains these two encoders at the same time to
learn a multi-modal embedding space. CLIP uses the idea of natural language
supervision and it is trained with text as a whole instead of an exact word as
a label, which helps to establish connections between image representations and
natural language and makes it more efficient at zero-short transfer. This model is
trained over a dataset of over 400 million image and text pairs that are retrieved
from public sources on the Internet, and maximizes the cosine similarity of the
correct pairs while minimizing that of the incorrect ones during training. For
data augmentation, it only applies a random crop to resized images. Given an
image and a list of potential label texts, CLIP takes the image and returns the
possibilities for each item in the list, and thus gets the most suitable one as the
final output.

Figure 1: CLIP model architecture
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2.1.2 ClipCap

ClipCap (Mokady et al., 2021) is designed for image captioning. Since CLIP is
trained over a large amount of data and can generate representative semantic
encodings for an image without extra supervision, ClipCap applies CLIP as its
image encoder. As shown in Figure 2, it trains a lightweight transformer-based
mapping network to generate a fixed length prefix from CLIP encoding and a
learned constant to GPT-2, and then fine-tune the language model, i.e. GPT-2
taking the generated prefix together with captions of the image as input and
captions themselves as target. When inference, GPT-2 is utilized to generate
meaningful captions directly from prefix embeddings of the image. There are
two modes of training, including training only transformer mapping network
or also with fine-tuning of GPT-2. Pre-trained ClipCap models are provided
as well, which were trained over data from COCO dataset (Lin et al., 2014)
and Conceptual Captions dataset (Sharma et al., 2018). These two datasets
have different styles, with Conceptual Captions, sourced from the web, offering
a wider variety of styles. Meanwhile, ClipCap’s training is quite fast. Different
from CLIP, ClipCap can generate a sentence as a caption for a given image,
without the need for additional information or sources.

Figure 2: ClipCap model architecture

2.2 Generative Pre-trained Transformer Models

Generative pre-trained transformer (GPT) models (Yenduri et al., 2023) are
large-scale, transformer-based deep-learning neural network architectures devel-
oped by OpenAI in the field of Natural Language Processing. Large language
models in the GPT family are designed to complete tasks including answering
questions, translating languages, summarizing texts, generating creative writ-
ing, etc., in human-like text, basically through predicting the next word or the
likelihood of a sequence of words. With millions to billions or even trillions of
parameters, they are pre-trained over extremely vast amounts of data and have
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shown extraordinary abilities to understand and generate complex text in natural
language. Most GPT models are accessible through APIs. While GPT-4 is now
the most advanced system, here are the models chosen for our task.

2.2.1 Text-davinci-003

Text-davinci-003 was developed by OpenAI and published in 2022. It is noted
for its advanced ability of natural language understanding and generation, es-
pecially for contextually relevant text completion. It is proficient in tasks like
content creation, summarization, and complex problem-solving. However, to be
an older completion and embedding model, it was shut down in on January 4th,
2024.

2.2.2 GPT-3.5-turbo

GPT-3.5-turbo (OpenAI, 2022), a model in the GPT-3.5 series, is optimized for
quick interactions. It is suitable for applications requiring rapid response times
while with language processing in good quality. Its performance is notable in the
context of chat applications and real-time language processing tasks.

2.2.3 GPT-4

GPT-4 (OpenAI, 2023) is the latest and most advanced version. It is more ca-
pable of understanding and generating text and can handle complex tasks better
than GPT-3.5. It is also known for its multi-modal capabilities of understanding
and generating content in other modalities, such as images.



Chapter 3

Methodology

In this chapter, it is explained how exactly and with what means a method for
automatic map storytelling was developed.

3.1 Procedure

3.1.1 Creation of map dataset

As with any project that involves fine-tuning models, the first step was to assem-
ble a map dataset with corresponding ground-truth captions. For this task, the
David Rumsey Historical Map Collection (Rumsey, David, and Cartography As-
sociates, 2024) was the ideal data source. This map collection contains more than
200’000 historical maps from all over the world and each map is complemented
by detailed metadata. The metadata contains, for example, the map title, date
and location and, in some cases, detailed descriptions of the map content and
background information. An example of how the metadata is structured can be
seen in Appendix A.

Since, as mentioned in 1.3, the focus would be topographic maps created between
the 16th and 19th century, and pictorial maps, only the maps in the categories
Classical1 and Pictorial map2 were considered. In order to then automatically
download all maps of interest, a Python script (AutomaticMapDownload.py) was
written that allows to do so with the help of Selenium WebDriver (SeleniumHQ,
2023). This script will be explained in more detail in subsection 3.2.1.

This script was then used to download all necessary maps and metadata from
the David Rumsey Historical Map Collection. In total, 1’524 maps belonging to
the category Classical and 5’234 pictorial maps were downloaded. To keep the
memory size low, all maps were exported as Small (i.e., up to 768 px). After
carefully looking through the downloaded maps, it became clear that not all of
them were useful since some of the "maps" featured images of book covers, letters

1https://www.davidrumsey.com/luna/servlet/view/all/what/Classical
2https://www.davidrumsey.com/luna/servlet/view/all/what/Pictorial+map

8
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3. Methodology 9

or buildings, which had to be removed. This required some manual work, but
fortunately the file names made it obvious which files had to be deleted from the
dataset. As a result of this filtering process, the dataset was reduced to 1’334
Classical and 3’183 pictorial maps, which together take up less than 2 GB of
space.

3.1.2 Creation of ground-truth captions

To create ground-truth captions answering the questions introduced in 1.3, the
necessary information had to be extracted from the metadata belonging to each
map. For this task, two Python scripts (CaptionGenerationClassical.py and Cap-
tionGenerationPictorial.py ) were created that first load in all maps and meta-
data. Then, for each map, its path is saved and the corresponding metadata is
scanned line for line for keywords, e.g., Date and Country etc., as the metadata
is structured similar to an attribute table. The needed information could then
be saved in separate lists. These two scripts will be explained in more detail in
subsection 3.2.2.

After applying the above-mentioned approach to both the Classical and pictorial
maps, the problems with this approach became clear and will be addressed in the
following, as well as how they were (partially) solved:

Classical maps:

1. Where? Extracting the ground-truth answering this question from the
metadata created major challenges. Firstly, some maps contain several lo-
cation attributes that are not ordered by importance, i.e., the first location
showing up in the metadata does not always correspond to the area taking
up the most space in the map. Secondly, in a couple of cases, the location
attribute is incorrect. Finally, there are maps with a very general location
attribute, e.g., Europe, while the depicted country is Italy. To overcome
these problems, the scrips had to be extended to be able to also derive
locations from the title and in many cases, the location attribute had to be
manually corrected to ensure accurate ground-truth captions.

2. What? Since separate scripts for Classical and pictorial maps were made,
the map type (topographic map) had not to be derived from the metadata
itself. For the map style part, information from the Note attribute had to
be used. Because the content of this attribute usually varied a lot across
all maps (and would lead to too many style categories) and sometimes was
in other languages instead of English, ways to create fewer distinct style
groups had to be explored. The most successful approach was using the
Python Counter class to automatically generate a dictionary where the note
information is stored as key and the count as value. This way, identical note
information and the number of occurrences could be made visible which
then helped to reduce the number of style categories to just six. Note that
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this only worked for maps with a Note attribute. For the remaining maps
(about 15%), no style ground-truth could be created.

3. When? This information was extracted by scanning the Date attribute in
the metadata and since this field was never incomplete, no problems arose.

4. Why? As the metadata did not contain information about the purpose
of a given map, it was decided to let GPT-3.5 (OpenAI, 2022) answer this
question with its generative capabilities instead. Therefore, no ground-
truth captions were created for this part.

Pictorial maps:

1. Where? Using the Python Counter class to get an idea about the class
imbalance regarding the locations, the following was revealed: Overall, the
pictorial maps are depicting 1’349 different locations (with 3’183 maps in
total) and over 600 maps are either depicting the world or the United States.
The majority of the remaining locations are only featured on a single map
each. Due to this huge class imbalance, it was decided to only focus on the
two largest classes, namely pictorial maps depicting either the whole world
or the United States.

2. What? Analogous to the Classical maps, the map type (pictorial map) had
not to be derived from the metadata itself. For the map topic part, at first
the information from the title was extracted, which led to way too many
topic classes. Once again, solutions had to be found to reduce the number
of topics or generalize them. Extracting the information from the Subject
attribute led to fewer classes but it was mostly too general and not all maps
even contained this attribute field. Finally, it was decided to download
pictorial maps depicting either the world or the United States featuring
common topics separately using the Subject attribute (e.g., pictorial maps
with topic Military) and then manually try to group them into certain topic
classes.

3. Why? Just like for Classical maps, it was decided to let GPT-3.5 (OpenAI,
2022) answer this question with its generative capabilities.

The results of this ground-truth creation process are separate lists for each of the
caption categories containing the captions as well as corresponding lists contain-
ing the paths to the maps. Here, the ground-truth captions are typically only
composed of keywords, e.g., Italy or 16th century, and not full sentences.

Note that instead of creating the ground-truth captions with the above-mentioned
semi-automatic method, it was also explored to create them fully automatic from
the metadata using large language models, such as GPT-4 (OpenAI, 2023) and
HuggingChat Python API (Soulter, 2023). The idea was to utilize the advanced
generative capabilities of these models by calling their APIs, enabling the au-
tomatic expansion of the dataset while solving the problems mentioned above.
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These include the following: 1.) multi-location attributes; 2.) categorizing at-
tributes with high variety into fewer distinct groups; 3.) no direct information for
the Why? part; 4.) metadata in other languages instead of English and 5.) re-
ducing the amount of tedious manual work. This method not only augments the
dataset size but also inserts the model’s linguistic expressions and styles into the
ground-truth captions which are easy to understand for large language models in
the later steps, potentially enhancing the robustness of the trained map caption-
ing models. Text-davinci-003, GPT-3.5-turbo, GPT-4, and HuggingChat were
used for trials. To construct an optimal prompt for GPT-4, specific attributes of
metadata were selected: Short Title, World Area, Subject and Full Title.

The structured prompt consists of two main parts, including the attributes to
be used and the requirements for the generated captions, which can also present
the challenges of prompt engineering for ground-truth caption creation, as shown
below:

1 f "Summarize t h i s i n f o as a rea sonab l e sentence in Engl i sh f o r image
capt i on ing o f h i s t o r i c a l maps , based on : { a t t r i b u t e s } .
Requirements : 1 . t r a n s l a t e a l l other languages in to Engl i sh 2 . as
shor t as p o s s i b l e 3 . no abbr ev i a t i on s 4 . without any punctuat ion
mark 5 . no l onge r than 12 words 6 . only ’what ’ and ’ where ’ ,

without time 7 . only mention l o c a t i o n i n f o once 8 . without people
’ s name 9 . a l l in l owe r ca s e s with the gene ra l format : map
dep i c t i ng [ shor t t i t l e ] in [ world area ] . "

However, even after extensive prompt engineering experiments, this approach had
to be discarded. Details are further explained in Section 5. Table 2 below gives
an overview of the final number of classes and maps used for each of the caption
categories. In addition, Appendix B gives more insight into the classes.

Caption category Number of classes Number of maps
Map Type (What?) 2 4’517
Area (Where?)T 27 723
Style (What?)T 6 1’132
Century (When?)T 4 1’334
Area (Where?)P 2 290
Topic (What?)P 13 284

Table 2: Overview of number of classes and maps for each of the caption cat-
egories. The superscript letters T and P stand for Topographic and Pictorial
maps, i.e., 723 topographic maps are depicting 27 different areas.
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3.1.3 Fine-tuning

ClipCap:

Initially, the idea was to fine-tune the ClipCap model since it is capable of gener-
ating full-sentence captions. For this approach, the ground-truth captions gener-
ated with the methods explained in 3.1.2 had to be extended to full sentences as
well. This was done by simply embedding the keyword captions into predefined
sentences, as shown in the following code snippet:

1 capt ionsArea . append ( f "Topographic map dep i c t i ng { area } . " )
2 capt ionsDate . append ( f "Created in the {date } . " )
3 c ap t i on sS ty l e . append ( f "{note } . " )

It was then planned to fine-tune models for each of the caption categories, thus
the separate caption lists. Later, the generated sentences should be concatenated
into a full caption. The reason for this is that otherwise the output string, which
had to be constructed by a general ClipCap model at once, would have been
too long. Furthermore, it was believed that having multiple specialized models
would create a more flexible method for caption generation, especially since the
number of maps in the dataset is not large enough to expose a general model to
all possible caption variations.

Unfortunately, even after considerable efforts to fine-tune ClipCap, this approach
did not lead to satisfying results, which ultimately led to this model being dis-
carded. The reason for the failure of this approach is assumed to be the following:
ClipCap’s underlying image encoder CLIP model comes in two variants. The first
one was pre-trained on the COCO image dataset (Lin et al., 2014) and the second
one on the Conceptual Captions dataset (Sharma et al., 2018). These datasets
mostly consist of images featuring real-life situations that are too distinct from
historical maps. Furthermore, since during the fine-tuning of ClipCap, only the
transformer mapping network and GPT-2 are actually fine-tuned, the underlying
image encoder CLIP model stays frozen and is not exposed to these new historical
map images.

CLIP:

After realizing that ClipCap was not suitable for this dataset, it was tested to
see how the base CLIP model performs when it receives historical maps as input.
Surprisingly, this model is already able to recognize certain countries and topics.
This is why it was decided to continue fine-tuning CLIP instead.

The fine-tuning process was adopted from Jhon Parra (2022) and adapted for this
specific case. Overall, the idea was once again to fine-tune specialized models for
each of the six caption categories. Here, the keyword ground-truth captions,
created with the methods described in subsection 3.1.2 were used without hav-
ing to extend them to full sentences. For training each model, the following
hyperparameters were selected:
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• Maximum number of epochs: 32

• Batch size: 10

• Loss: Cross-entropy loss

• Optimizer: Adam

• Initial learning rate: 1e-5

• Scheduler: Cosine Annealing Learning Rate scheduler

The models were all trained on a single NVIDIA RTX A4000 GPU (16 GB) with
a maximum memory consumption of 4500 MB and a maximum training time
of 20 minutes. This whole fine-tuning process will be explained in more detail
in subsection 3.2.3. Furthermore, subsection 3.2.4 shows how the accuracy of
fine-tuned models was assessed.

3.1.4 Combining fine-tuned models

Overall, there are two approaches with different logic to integrating GPT models
into storytelling. The first involves leveraging models like ClipCap that incorpo-
rate GPT to directly generate stories. The second approach enhances the natural
language processing part of the pipeline by applying GPT capabilities individu-
ally, thus improving the overall quality of textual output in storytelling. Since
the first approach was already discarded, a pipeline with an underlying decision
tree structure was chosen to be the implementation of the second approach. The
idea was to use fine-tuned CLIP models to predict keyword captions and then
use a GPT model to tell stories based on the generated keywords.

The fine-tuned CLIP models for the six categories, including map type, area of
topographic map, century of topographic map, style of topographic map, area of
pictorial map, and topic of pictorial map, are combined by the above-mentioned
decision tree structure, as shown in Figure 3. An input map is first categorized
by map type, distinguishing between topographic and pictorial maps. Each map
type is further analyzed and its area, century, style or topic is predicted by
a corresponding CLIP model. After completing this process, the method has
generated a set of four keyword labels for a topographic map or three for a
pictorial map.

Large language models (LLMs) are then utilized to generate the final output.
Taking into account factors like speed of response, price of the API, quality of
answers, etc., GPT-3.5 has been chosen. Unlike the prompt to generate a ground
truth caption from metadata in subsection 3.1.2, except for generating a basic
caption as a description for the map, the prompt is structured to be able to
emphasize and respond to different aspects in the generated story as well, by
embedding key inquiries into the construction. This serves as the extension to
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the story content, and also as the response to the why? question. As the utiliza-
tion situation of the map and the interests of its users can significantly vary, the
question of ’why’ remains open-ended. In this context, we offer a plausible ex-
planation for the potential usage of the map. The following are tailored prompts
for each question:

• What?: "What is this map about?"

• Where?: "Where is this map about?"

• When?: "When is this map about?"

• Why?: "What can this map be used for?"

The prompt of GPT-3.5 is as shown below, and the implementation of the above-
mentioned is explained in more detail in subsection 3.2.5.

1 f " Please c r e a t e a conc i s e sentence that encapsu l a t e s the se keywords :
{keywords } . Add i t iona l ly , prov ide a b r i e f explanat ion , in under

30 words , about : { que s t i on s }

Figure 3: Decision tree structure
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3.2 Details concerning the methodology

This section explains the underlying code of the most important Python scripts,
which were briefly discussed in the previous section 3.1, in more detail. Imports
and variable initializations are omitted. Note that the line numbers displayed
here do not correspond to the ones in the actual code and slight simplifications
were applied.

3.2.1 Automatic map download

In the following, the most important parts of the Python script AutomaticMap-
Download.py are explained with the help of code snippets:

The three lines in the code snippet below set up a connection to the Chrome
browser, specify a target website (in this case leading to the Classical maps on
David Rumsey Historical Map Collection), and open that website in the browser
using the Selenium WebDriver.

1 d r i v e r = webdriver . Chrome ( )
2 webs i te = "davidrumsey . com/ luna / s e r v l e t /view/ a l l /what/ C l a s s i c a l "
3 d r i v e r . get ( webs i te )

Then, at line 4 in the next snippet, the number of available pages showing the
maps is entered manually. After that, the actual automated interaction with the
browser happens. The first for-loop (see line 6) iterates over all pages, and the
variable map_elements (see line 7) always contains the number of maps located
per page. At line 9, the second for-loop then iterates over all maps per page and
always the same procedure is executed: At line 11, the current map is clicked on,
then starting from line 12, it is tried to locate an export button. If it is clickable,
that button is pressed (see lines 21 and 22), or else the back button is pressed
and the next map is inspected. After successfully clicking the export button,
the desired resolution is selected (see line 25 and 27). Finally, at lines 28 and
29, the current map is left and the a new one will be selected in the next loop
iteration.

4 amount_pages = 31
5

6 f o r page in range ( amount_pages ) :
7 map_elements = dr i v e r . f ind_elements (By .CSS_SELECTOR, "img" )
8

9 f o r m in range ( l en (map_elements ) − 1) :
10 map_element=dr i v e r . f ind_elements (By .CSS_SELECTOR, "img" ) [m]
11 d r i v e r . execute_scr ip t ( "arguments [ 0 ] . c l i c k ( ) ; " , map_element )
12 t ry :
13 export_button = WebDriverWait ( dr ive r , 2) . u n t i l (
14 EC. element_to_be_clickable ( (By . ID , "ExportButton" ) )
15 )
16 except TimeoutException :
17 pr in t ( "No Export Button found" )
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18 d r i v e r . back ( )
19 cont inue
20

21 export_button . c l i c k ( )
22 export_button . c l i c k ( )
23

24 r e s o l u t i o n = WebDriverWait ( dr ive r , 20) . u n t i l (
25 EC. presence_of_element_located ( (By . ID , "ExportSize3 " ) )
26 )
27 r e s o l u t i o n . c l i c k ( )
28 d r i v e r . back ( )
29 d r i v e r . back ( )

3.2.2 Ground-truth caption generation

In the following, the most important parts of the Python scripts CaptionGener-
ationClassical.py and CaptionGenerationPictorial.py are explained. Note that
because the structure of both scripts is almost identical, the former will be pre-
sented in more detail.

The code snippet below shows how each map and its metadata have to be loaded
from the directory ClassicalMaps containing all Classical maps and corresponding
metadata. After line 2, where the correct directory is chosen, each sub-folder in
this main folder is iterated over (see line 4). In each of these sub-folders, there are
two files: A .jpg image which is showing a map and a .txt file where its metadata
is stored. At lines 10 and 14 it is then checked what the type of the current file
is. The image paths (map paths) are simply stored in image_paths (see line 12),
while the text content is prepared to be scanned at line 18.

1 maps_director ie s = [ " Class ica lMaps " ]
2 f o r maps_directory in maps_director ie s :
3

4 f o r root , d i r s , f i l e s in os . walk ( maps_directory ) :
5

6 f o r f i l e in f i l e s :
7

8 f i l e_path = os . path . j o i n ( root , f i l e )
9

10 i f f i l e . lower ( ) . endswith ( " . jpg " ) :
11

12 image_paths . append ( f i l e_path )
13

14 e l i f f i l e . lower ( ) . endswith ( " . txt " ) :
15

16 with open ( f i l e_path , " r " , " utf −8" ) as t x t_ f i l e :
17

18 txt_content = t x t_ f i l e . read ( )

Starting from line 19, the metadata of the current map is scanned line for line
for certain keywords, e.g., "Note" as seen in line 21, which correspond to the
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attributes. The information is then stored in separate variables (see lines 22, 25
and 29).

19 f o r l i n e in txt_content . s p l i t ( "\n" ) :
20

21 i f l i n e . s t a r t sw i t h ( "Note" ) :
22 note = l i n e . s p l i t ( "\ t " , 1) [ 1 ]
23

24 e l i f l i n e . s t a r t sw i t h ( "World Area" ) :
25 area = l i n e . s p l i t ( "\ t " , 1) [ 1 ]
26 . . .
27

28 e l i f l i n e . s t a r t sw i t h ( "Date" ) :
29 date = l i n e . s p l i t ( "\ t " , 1) [ 1 ]

Later, some of these saved attribute values had to be further processed, especially
the location attribute, which is denoted as area in the code snippet below. In
many cases it was necessary to bring the area variable to a common value due
to typos or different languages as seen at lines 30 and 33. On the other hand,
it was needed that the area variable had to be derived from the title of the map
itself because the metadata was not accurate enough. This can be seen at lines
37 and 40.

30 e l i f "romain , empire " in area . lower ( ) :
31 area = "Roman Empire"
32

33 e l i f " balkan" in area . lower ( ) or " balkans " in area . lower ( ) :
34 area = "Balkans"
35 . . .
36

37 e l i f " b e l g i e " in s h o r t_ t i t l e . lower ( ) :
38 area = "Belgium"
39

40 e l i f " g r a e c i a " in s h o r t_ t i t l e . lower ( ) :
41 area = "Greece"

Finally, the processed variables belonging to each caption category for the cur-
rent map are stored in separate lists. When all maps and metadata have been
processed, the lists are saved as NumPy arrays for later use.

42 capt ions_area . append ( area . lower ( ) )
43 captions_note . append ( note . lower ( ) )
44 . . .
45 captions_npy = np . array ( capt ions_area )
46 np . save ( " c lass i ca lMapsCapt ionsArea . npy" , captions_npy )
47 captions_npy = np . array ( captions_note )
48 np . save ( " c las s i ca lMapsCapt ionsNote . npy" , captions_npy )
49 . . .

The following code snippet shows how the ground-truth caption generation looked
like for pictorial maps (CaptionGenerationPictorial.py). Here, the difference was
that, as already mentioned in 3.1.2, separate folders containing a single general
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topic each were processed. In the case below (see line 1), the contents of the
folder MilitaryWorld containing military pictorial world maps is checked. Then,
based on keywords found in the map’s title, the map is assigned to a bit more
specific topic class.

1 e l i f maps_directory == "Mil itaryWorld " :
2 i f r e . s earch ( r "World News" , s h o r t_ t i t l e ) or re . s earch (
3 r "Newsmap" , s h o r t_ t i t l e
4 ) :
5 capt i ons . append ( f "news during world war 2" )
6

7 e l i f r e . s earch ( r "Dated" , s h o r t_ t i t l e ) :
8 capt i ons . append ( f "world war 2" )
9

10 e l s e :
11 capt i ons . append ( f "world war 2" )

3.2.3 Fine-tuning CLIP

In this subsection, the fine-tuning process of CLIP is presented in more detail.
Since in total six models were fine-tuned, there also exist six separate Python
scripts for training. Their structure is almost identical, this is why only the
one used for the caption category Map Type (fineTuneCLIPMapType.py) will be
explained in more detail:

The first step was to load the base CLIP model and set the device to cuda
(see lines 1 to 4). After that, at lines 6 and 7, the ground-truth captions and
corresponding map paths are loaded.

1 model = CLIPModel . from_pretrained ( " c l i p −vit−base−patch32" )
2 proc e s s o r=CLIPProcessor . from_pretrained ( " c l i p −vit−base−patch32" )
3 dev i ce = "cuda" i f torch . cuda . i s_ava i l ab l e ( ) e l s e "cpu"
4 model , p r ep roce s s = c l i p . load ( "ViT−B/32" , dev i c e=device , j i t=Fal se )
5

6 c l a s sp i c_cap t i on s = np . load ( " c l a s sP i c t o r i a lCap t i o n s . npy" )
7 c l a s sp i c_paths = np . load ( " c l a s sP i c t o r i a l P a t h s . npy" )

In the second step, due to the fact that the map dataset is unbalanced regarding
map types (1’334 Classical maps vs. 3’183 pictorial maps), sub-sampling was
necessary. Therefore, at lines 8 to 14, the two map types are separated and
stored in separate lists. Then, with help of the sample function provided by
Python’s random module (see lines 17 and 19), exactly 1’334 pictorial maps are
sampled to keep the two classes balanced.

8 capt ions_nopic=c l a s sp i c_cap t i on s [ c l a s sp i c_cap t i on s !=" p i c t o r i a l map" ]
9 ind i ce s_nop ic = np . argwhere ( c l a s sp i c_cap t i on s != " p i c t o r i a l map" )

10 paths_nopic = c la s sp i c_paths [ indices_no_pic ]
11

12 capt ions_pic = c l a s sp i c_cap t i on s [ c l a s sp i c_cap t i on s==" p i c t o r i a l map" ]
13 i nd i c e s_p i c = np . argwhere ( c l a s sp i c_cap t i on s == " p i c t o r i a l map" )
14 paths_pic = class_pic_paths [ i nd i c e s_p i c ]
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15

16 random . seed (24)
17 subsampled_captions_pic = sample ( l i s t ( capt ions_pic ) , k= 1334)
18 random . seed (24)
19 subsampled_paths_pic = sample ( l i s t ( paths_pic ) , k=1334)

After balancing the classes, it was time to define the train, validation and test
sets. In order to get optimal splits, scikit-learn’s StratifiedShuffleSplit (see line
20) was used which preserves the percentage of samples for each class. The code
snippet below shows how the test split was created and similarly, the validation
split was defined. It was decided to use 90% of maps for training, 10% for
validation and the rest for testing.

20 s s s=S t r a t i f i e d S h u f f l e S p l i t ( n_sp l i t s =1, t e s t_s i z e =0.1 , random_state=42)
21

22 f o r train_index , test_index in s s s . s p l i t ( image_paths , capt i ons ) :
23

24 t ra in_capt ions , train_image_paths = [ capt i ons [ i ] f o r i in
25 tra in_index ] , [ image_paths [ i ] f o r i in tra in_index ]
26

27 test_capt ions , test_image_paths = [ capt i ons [ i ] f o r i in
28 test_index ] , [ image_paths [ i ] f o r i in test_index ]

Finally, after initializing the dataloader, fine-tuning of the base CLIP model
could begin. For this, the training and validation loop was adopted by Jhon
Parra (2022), as already mentioned in 3.1.3.

The result of the whole fine-tuning process were six separate models, one for each
caption category:

• Map Type: best_model_MapType.pt

• Area (Topographic): best_model_27Countries.pt

• Century: best_model_Date.pt

• Style: best_model_Note.pt

• Area (Pictorial): best_model_Pictorial_Area.pt

• Topic: best_model_Pictorial_Topic_V2.pt

3.2.4 Accuracy assessment

This subsection explains how the accuracy of the fine-tuned CLIP models was
evaluated. Here, the procedure is shown for the model best_model_Date.pt which
was fine-tuned for the caption category Century (Topographic).

The following code snippet shows how after first loading the base CLIP model
(see line 1), the saved weights are loaded at line 7. To be able to conveniently
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switch between both base and fine-tuned model, the varibale useFineTuned was
introduced.

1 model , p r ep roce s s = c l i p . load ( "ViT−B/32" , dev i c e=dev i ce )
2 useFineTuned = True
3

4 i f useFineTuned :
5

6 model_path = " checkpo int s /best_model_Date . pt"
7 model . load_state_dict ( torch . load (model_path , map_location=dev i ce

) )
8 model = model . eva l ( )
9 model = model . to ( dev i c e )

10 pr in t ( "Using Fine−tuned model" )

Line 11 and 12 define a list consisting of all classes belonging to the Century
caption category (see Table 2). Then, starting from the for-loop at line 17, all
test maps are iterated and corresponding ground-truth captions are through.
First, each map is prepossessed and the classes tokenized (see lines 19 and 20).
Later at line 27, the variable probs contains the softmax probabilities for each
class based on the test input map. These probabilities represent the model’s
confidence in assigning the image to each class. Because we are interested in the
class assigned to the largest probability, at line 29, this class is extracted from
the classes list. If the obtained prediction corresponds to the ground-truth, then
the count variable is incremented (see line 32 and 33). The overall accuracy is
then calculated as seen at line 35.

11 c l a s s e s = [
12 "19 th century " , "18 th century " , "17 th century " , "16 th century " ]
13

14 count = 0
15 t o t a l = 0
16

17 f o r testmap , groundtruth in z ip ( test_image_paths , t e s t_capt ions ) :
18

19 image = preproce s s ( Image . open ( testmap ) ) . unsqueeze (0 ) . to ( dev i c e )
20 t ex t = c l i p . t oken i z e ( c l a s s e s ) . to ( dev i c e )
21

22 with torch . no_grad ( ) :
23 image_features = model . encode_image ( image )
24 t ex t_fea ture s = model . encode_text ( t ext )
25

26 logits_per_image , log i t s_per_text = model ( image , t ex t )
27 probs = logits_per_image . softmax (dim=−1) . cpu ( ) . numpy( )
28

29 p r ed i c t i on = c l a s s e s [ np . argmax ( probs ) ]
30 t o t a l += 1
31

32 i f p r ed i c t i o n == groundtruth :
33 count += 1
34

35 accuracy = count / t o t a l
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3.2.5 Caption inference and GUI

In this subsection the Python script CaptionInferenceGUI.py is explained in de-
tail. This script carries out two tasks: construction of the GUI, and combination
of the six fine-tuned CLIP models with a GPT-3.5 API prompt. The GUI’s web-
page is built by Gradio3, which is an open-source Python package that helps to
demo deep learning models. The following code snippet shows the block con-
struction of the interface.

This Gradio interface has two tabs: "Demo" and "README". The "Demo" tab
contains an image upload section where the user can upload or drag an image
for analysis, four checkboxes for selecting map details, a submit button, and a
text box for displaying the generated storytelling caption. Those four check-
boxes correspond to the four questions of What?, Where?, When?, and Why?.
When selected, the generated story will emphasize the chosen aspects, providing
a detailed narrative. If none are selected, a basic version of the story will be
generated, depicting essential content without extension. The click action of the
submit button will then transfer the input of components to the interaction func-
tion map_interface. The other "README" tab includes a Markdown section
that gives an overview of this demo, describing its features and capabilities, and
providing instructions on usage, technical background and notes.

1 with gr . Blocks ( ) as demo :
2 with gr . Tab( "Demo" ) :
3 with gr .Row( "Map De ta i l s " ) :
4 with gr . Column( "Map" ) :
5 image_input = gr . Image ( l a b e l="Upload or Drag Map

Here" , type=’numpy ’ )
6 with gr .Row( "Map De ta i l s " ) :
7 what = gr . Checkbox ( l a b e l="What" )
8 where = gr . Checkbox ( l a b e l="Where" )
9 when = gr . Checkbox ( l a b e l="When" )

10 why = gr . Checkbox ( l a b e l="Why" )
11

12 submit_button = gr . Button ( "Submit" )
13

14 output_text = gr . Textbox ( l a b e l="Caption" )
15

16 submit_button . c l i c k (
17 fn=map_interface ,
18 inputs =[ image_input , what , where , when , why ] ,
19 outputs=output_text
20 )
21 with gr . Tab( "README" ) :
22 gr . Markdown( """
23 # Map S t o r y t e l l i n g Tool
24 . . .
25 """ )

3https://www.gradio.app/

https://www.gradio.app/
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The code snippet below shows how one of the six fine-tuned models is loaded.
First, the device is set to cuda and then the base CLIP model is initialized.
Afterwards, the fine-tuned weights are loaded and all parameters in the model
are frozen to keep the model unchanged during inference.

26 dev i ce = "cuda" i f torch . cuda . i s_ava i l ab l e ( ) e l s e "cpu"
27 model , p r ep roce s s = c l i p . load ( "ViT−B/32" , dev i c e=dev i ce )
28

29 model_maptype = copy . deepcopy ( model )
30 de f freeze_network ( model ) :
31 f o r p in model . parameters ( ) :
32 p . requires_grad = False
33 re turn model
34

35 model_path_maptype = "Models_CLIP/best_model_MapType . pt"
36 model_maptype . load_state_dict ( torch . load (model_path_maptype ,

map_location=dev i ce ) )
37 f reeze_network (model_maptype )

In the following, the code snippet of the combined model class is explained in
detail. The class takes six models as input. In the forward method, it processes
the input through the models to predict keywords for each category. Given a
map image, it first predicts the type of the map, i.e., topographic or pictorial,
as the root node in the decision tree. Then, based on the type, it further pre-
dicts area, century, and style category keywords for topographic maps, and area
and topic category keywords for pictorial maps. During prediction, the items of
each category are tokenized by CLIP’s tokenizer, and the model returns a list of
possibilities for each item, as shown in lines 46 to 49.

38 c l a s s Combined_model (nn . Module ) :
39 de f __init__( s e l f , model_maptype , model_location , model_century ,

model_note , model_area , model_topic ) :
40 super (Combined_model , s e l f ) . __init__ ( )
41 s e l f . model_maptype = model_maptype
42 s e l f . model_location = model_location
43 . . .
44 de f forward ( s e l f , x ) :
45 maptypes = [ " topographic map" , " p i c t o r i a l map" ]
46 t ex t = c l i p . t oken i z e ( maptypes ) . to ( dev i c e )
47 logits_per_image , log i t s_per_text = s e l f . model_maptype (x ,

t ex t )
48 probs = logits_per_image . softmax (dim=−1) . cpu ( ) . numpy( )
49 maptype = maptypes [ np . argmax ( probs ) ]
50

51 i f maptype == " topographic map" :
52 . . .
53 e l i f maptype == " p i c t o r i a l map" :
54 areas = [ " united s t a t e s " , "world" ]
55 . . .
56 t op i c s = [ ’ f l i g h t network ’ , . . . ]
57 . . .
58 re turn maptype , area , t op i c
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The next code snippet presents the interaction function for the demo. This
function begins with pre-processing map input as a NumPy array, and then the
combined model is applied to predict keyword captions. Subsequently, based on
the user’s selection of the four aspects (What?, Where?, When? and Why? ), they
are embedded into the GPT-3.5-turbo API prompt and an output is generated
within 60 tokens. Note that the API usage requires an OpenAI account key.
After generation, the output will be displayed in the text box on the right side
of the interface. Gradio also provides the share mode when launching the demo,
which can generate a temporary link to the webpage GUI for sharing with the
public.

59 de f map_interface (map , what , where , when , why) :
60 i f type (map) == " s t r " :
61 image = preproce s s ( Image . open (map) ) . unsqueeze (0 ) . to ( dev i c e )
62 e l s e :
63 map = Image . fromarray (map)
64 image = preproce s s (map) . unsqueeze (0 ) . to ( dev i ce )
65

66 r e s u l t s = [ ]
67 combined_model = Combined_model (model_maptype , model_location ,

model_century , model_note , model_area , model_topic )
68 combined_model . eva l ( )
69 with torch . no_grad ( ) :
70 r e s u l t s = combined_model ( image )
71

72 prompt = ""
73 i f what :
74 prompt += f "What i s t h i s map about ? "
75 i f where :
76 prompt += f "Where i s t h i s map about ? "
77 i f when :
78 prompt += f "When i s t h i s map about ? "
79 i f why :
80 prompt += f "What can t h i s map be used f o r ? "
81

82 re sponse = c l i e n t . chat . complet ions . c r e a t e (
83 model="gpt−3.5−turbo " ,
84 messages=[
85 {" r o l e " : " system" ,
86 " content " : "You are a h e l p f u l a s s i s t a n t " } ,
87 {" r o l e " : " user " ,
88 " content " : f " Please c r e a t e a conc i s e sentence that

encapsu l a t e s the se keywords : { r e s u l t s } . Add i t iona l ly , prov ide a
b r i e f explanat ion , in under 30 words , about : {prompt } . "

89 }
90 ] ,
91 max_tokens=60
92 )
93 r e s u l t s = response . cho i c e s [ 0 ] . message . content
94 r e s u l t s = r e s u l t s . s t r i p ( ’ " ’ )
95

96 re turn r e s u l t s



Chapter 4

Results

This chapter deals with the results of this project. Section 4.1 uses plots to
visualize what the fine-tuning process looked like. Afterwards, in Section 4.2,
the quality of the fine-tuned CLIP models is shown. The chapter concludes
with Section 4.3, where a developed Graphical User Interface (GUI) for map
storytelling is presented.

4.1 Fine-tuning Process

The following Figures 4 to 9 depict training and validation loss curves for each
of the six fine-tuned CLIP models.

Figure 4: Map Type Figure 5: Area (Topographic map)

24
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Figure 6: Style Figure 7: Century

Figure 8: Area (Pictorial map) Figure 9: Topic

Upon observation, one can see that the training loss decreased quite rapidly
for all models, although it is still worth noting the sudden spike in Figure 4.
Interestingly, the training loss never reached values very close to zero. The lowest
value of roughly 0.2 was reached in Figure 5. When taking a look at the validation
loss curves, a variety of patterns can be observed. In Figures 4, 5 and 9 the
curves can be described as decreasing or rather decreasing. On the other hand,
the validation loss in Figures 7 and 8 is increasing, the latter quite strongly. A
rather constant validation loss curve can be seen in Figure 6. Finally, it has to
be mentioned that the validation loss was subject to greater fluctuations overall
than the training loss.
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4.2 Fine-tuned CLIP Models

Table 3 below compares the prediction accuracy achieved for each of the six cap-
tion categories with the base CLIP model and with the fine-tuned CLIP models.
These numbers are based on 113 test maps (68 topographic maps and 45 pictorial
maps).

Caption Category Base CLIP Fine-tuned CLIP
Map Type (What?) 0.43 0.96
Area (Where?)T 0.28 0.78
Style (What?)T 0.29 0.75
Century (When?)T 0.40 0.76
Area (Where?)P 0.96 0.93
Topic (What?)P 0.47 0.67

Average Accuracy 0.47 0.81

Table 3: Comparison of prediction accuracy achieved (per caption category) with
the base CLIP model and fine-tuned CLIP models. The superscript letters T and
P stand for Topographic and Pictorial maps.

When studying the table, it becomes evident that the fine-tuned CLIP models
significantly outperform the base CLIP model in five out of six caption categories.
Only in the pictorial area category does the base model perform slightly better.
The prediction accuracy was determined by giving each test map as an input im-
age to the base CLIP model and to all supporting fine-tuned CLIP models. Then
it was checked whether the generated keyword caption for each caption category
matches the ground-truth caption. Note that because some of the test maps
only contain incomplete or no metadata information at all (to derive ground-
truth captions), in these cases, the accuracy assessment had to be performed by
manually inspecting both the generated caption and the input map.

The two Figures 101 and 112 on the next page depict two of these test maps.
Tables 4 and 5 show the corresponding captions generated by base CLIP and the
fine-tuned CLIP models.

1https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~260648~5522977:
Air-France--Reseau-Aerien-Postal-?

2https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~263393~5524234:
142--Carte-Physique-et-Politique-de?

https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~260648~5522977:Air-France--Reseau-Aerien-Postal-?
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~260648~5522977:Air-France--Reseau-Aerien-Postal-?
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~263393~5524234:142--Carte-Physique-et-Politique-de?
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~263393~5524234:142--Carte-Physique-et-Politique-de?
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Figure 10: Orginal title: Air France. Reseau Aerien Postal.

Caption Category Base CLIP Fine-tuned CLIP

Map Type (What?) pictorial map pictorial map

Area (Where?)P world world

Topic (What?)P world war 2 flight network

Table 4: Captions generated by base CLIP and fine-tuned CLIP models for each
category. Bold captions match the ground-truth.

Figure 11: Orginal title: Carte Physique et Politique de L’Asie.

Caption Category Base CLIP Fine-tuned CLIP

Map Type (What?) pictorial map topographic map

Area (Where?)T eastern hemisphere asia

Style (What?)T
hand colored with

decorative elemnts and
pictorial relief

hand colored

Century (When?)T 18th century 19th century

Table 5: Captions generated by base CLIP and fine-tuned CLIP models for each
category. Bold captions match the ground-truth.
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When taking a look at Table 4, one can observe that both models correctly
predicted the map type and area. But base CLIP was unable to generate the
correct topic caption, as the test map is showing an Air France flight network
map.

Upon observing Table 5, it becomes clear that the fine-tuned models generated
the correct captions for each caption category. Even though the base CLIP
model was not too far away from the ground truth when inspecting the Area and
Century categories, it was not able to distinguish the map types correctly, which
is crucial.

For the sake of completeness, following Table 6 shows the resulting captions
generated by the discarded model ClipCap.

Test Map Base ClipCap

Figure 10 A map of the world is on display in a room.

Figure 11 A map of the world is shown on a table.

Table 6: Full captions generated by the discarded base ClipCap model for both
of the example test maps.

4.3 Map Storytelling and GUI

Figure 12 shows the interface of the map storytelling tool demoed by Gradio3,
taking a map4 of the United States as an example. This tool applies the decision
tree structure introduced in subsection 3.1.4, utilizing the fine-tuned CLIP models
to analyze uploaded map images and generate relevant descriptions as storytelling
using OpenAI’s GPT-3.5 model.

To use this GUI, one uploads a map image by clicking or dragging. This ap-
plication will identify the map type first (i.e., topographic or pictorial). Then,
based on that information, the app will recognize specific details (e.g., area, cen-
tury, topic, and style). After extracting keyword captions, the GPT-3.5 model is
employed through its API to generate a detailed textual description of the map
based on the identified information. There are four check-boxes provided for users
to select different details they wish to analyze, i.e., the four questions: What?,
Where?, When?, and Why?. Upon clicking the "Submit" button and waiting
for the system to process, a description of the map with emphasis on the chosen
aspects is generated. Since the fine-tuned models are pre-loaded when launching
the demo, the generation process is efficient and usually takes less than twenty
seconds, often just several seconds. Table 7 shows the final captions generated
by our approach.

3https://www.gradio.app/
4https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~349878~90117266:

America-the-Wonderland---A-Pictoria?

https://www.gradio.app/
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~349878~90117266:America-the-Wonderland---A-Pictoria?
https://www.davidrumsey.com/luna/servlet/detail/RUMSEY~8~1~349878~90117266:America-the-Wonderland---A-Pictoria?
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Figure 12: Demo layout

Test Map Decision Tree Method

Figure 10

This pictorial map illustrates the global flight network,
showcasing worldwide destinations and travel routes. It is a

visual representation of the world, providing information
about flight connections and can be used for planning and

visualizing travel itineraries.

Figure 11
A hand-colored topographic map of 19th-century Asia,

illustrating landforms and elevations, providing geographic
information for various purposes.

Table 7: Full storytelling captions generated by the decision tree structured
method for both of the example test maps.



Chapter 5

Discussion

In this chapter, the results of this project are interpreted and discussed under
the given related work. Furthermore, possible consequences and limitations are
pointed out.

5.1 Interpretation and discussion of results

5.1.1 Fine-tuning Process

The training and validation loss curves (see Figures 4 to 9) in Section 4.1 show
that the behavior can look vastly different depending on the previous knowledge
of the base CLIP model. It turns out that more epochs had a positive impact
on fine-tuning the caption categories Map Type (Figure 4), Topic (Figure 9),
and especially Area (Topographic) (Figure 5), as both the validation loss and
training loss kept gradually decreasing. This means that the model is learning
and improving its performance on the given task. In the other plots, the opposite
is the case: after very few epochs (< 5), the validation loss almost plateaus or
increases again, meaning that the model is already over-fitting on the training
maps. An exact reason for the sudden spike in Figure 4 could not be found but
it is assumed that the learning rate was set too high for these epochs and caused
the model to overshoot the optimal parameters.

5.1.2 Fine-tuned CLIP Models

As already mentioned in Section 4.2, the fine-tuned CLIP models outperform the
base CLIP model in five out of six categories. On average, fine-tuning increased
CLIP’s performance by 34 percentage points (i.e., roughly 72%) in these tasks.
The reason why the base model performed slightly better in the Area (Pictorial)
caption category is that, as seen in Table 2, only 290 maps were used for fine-
tuning of that category. On the other hand, base CLIP has very likely seen
illustrations showing the United States or the world several thousand times with
way more variations and is therefore able to distinguish these two landmasses
a tiny bit more accurately. This might also explain why in Figure 5 the model

30
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starts to overfit after just one epoch.

Furthermore, it has to be said that while Table 3 shows that the fine-tuned models
overall outperform base CLIP, the degree of it is actually higher. This has to do
with following two points:

1. The base CLIP model generated for 109 out of all 113 test maps pictorial
map as map type, even though only 45 are truly pictorial. Calculating
precision and recall shows: PrecisionP = 41% and RecallP = 100%, while
PrecisionT = 100% and RecallT = 6%. This confirms that the base CLIP
model would perform much worse if the test set contained even more to-
pographic maps, as it would have assigned most of them the label pictorial
map. For comparison, the corresponding fine-tuned CLIP model achieved:
PrecisionP = 92%, RecallP = 100%, PrecisionT = 100% and RecallT =
94%.

2. Evaluating the prediction accuracy per caption category and not by com-
bined caption (see decision tree in Figure 3) favors the base CLIP model.
The reason is that, since as seen before, the CLIP model almost always
says that a map is pictorial, the probability that the wrong sub-tree is cho-
sen in the decision tree is rather high for topographic input maps. Since
determining the map type is the root node of the tree and therefore the
most crucial decision, incorrect predictions will lead to combined captions
that make no sense. For the example test map seen in Figure 10, the ac-
tual generated caption will not be made out of the keywords seen in the
left column in Table 5 but would instead be the ones shown in Table 8.
Nevertheless, the approach to evaluate the prediction accuracy per caption
category was chosen in order to not fully discredit the generative abilities
of the base CLIP model.

Caption Category Base CLIP

Map Type pictorial map

Area (Pictorial map) united states

Topic transport routes

Table 8: Captions generated by the base CLIP model for each category following
the logic of the decision tree. Note how these predicted keywords make no sense
when compared with the input test map depicted in Figure 11.

Overall, apart from the Map Type category, the base CLIP model still performed
better than random guessing. Especially in the categories Area (Topographic),
with 27 classes and Topic (Pictorial), with 13 classes, it was already able to
predict correct captions surprisingly well. This is why the jump from 47% to
67% in the latter might not look that impressive but considering the low amount
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of maps (i.e., 284 maps) used for fine-tuning that category, it is still a significant
improvement.

5.1.3 Decision Tree Structure

Through a decision tree structure, fine-tuned models are combined and the gener-
ative capabilities of GPT models are directly utilized. This integration provides
a way for systematic processing. Presently, there are six CLIP models, each
fine-tuned for a specific category. If additional aspects of the map are required
to be explored, a new CLIP model can be fine-tuned and then integrated into
the existing decision tree framework. This approach is not only efficient but
also straightforward to implement. It offers several advantages: 1.) It allows for
the manual selection of aspects crucial for comprehending a map; 2.) It utilizes
models in a way where each CLIP model specializes in its respective category,
thereby enhancing the overall accuracy and relevance of the captions generated;
3.) It facilitates the repeated utilization of the same data to learn distinct infor-
mation separately, thereby providing a solution to the challenge of limited data
availability in complicated deep learning tasks.

5.1.4 GPT API Usage

The quality of the story generated by LLMs depends to a large extent on how
complete the information in the prompt is perceived and how well the generation
is carried out. The former is reflected in the length, content, structure, language,
etc. of the generated story, which are already listed in the prompt as generation
criteria. The latter is reflected in the level of detail, topic relevance, fidelity
to the facts, and perplexity, which will be reflected in the balance of the four
questions and the syntax of the sentences, especially in the Why? part of the
story. Unlike What?, Where?, and When?, there is no clearly identifiable keyword
for Why? that represents the extension to the content. Therefore, this part can
mainly be used to measure the performance of the model based on its fact fidelity
and topic relevance. In practice, HuggingChat often generated irrelevant content
about the map, providing expansive explanations without constraints, while GPT
performed better. Therefore HuggingChat was discarded.

Even though ChatGPT’s underlying model is GPT-3.5 or GPT-4, the responses
from ChatGPT conversational interactions often differ from the same model’s
API responses. The reason is that ChatGPT is fine-tuned for conversational
use and takes contextual information when processing. Typically, ChatGPT
tends to yield more satisfactory answers to the given questions, even though
it may additionally require several emphasized or repeated explanations some-
times. However, responses from the API frequently lack this level of satisfaction,
particularly in maintaining the perplexity of the generated sentences at a low
level. It is observed that no matter in which kind of way to use the GPT model,
it does not always fully retrieve information in the prompt or in the right way.
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Therefore, the generated answers are likely to disqualify all requirements at the
same time, and it’s often more effective to be clear and concise instead of overly
long or complex. For queries with rigorous and multiple requirements, it listing
answer criteria separately in the prompt rather than condensing them into sev-
eral sentences performs more effectively. Besides, individually utilizing multiple
API calls to answer different parts of the requirements can also be helpful in ex-
ecuting the prompt. Furthermore, using GPT itself to craft the API prompt can
be highly beneficial as it aligns with the GPT model’s inherent understanding
capabilities.

Overall, to generate a compelling story with GPT models, the construction of an
effective prompt is critical and should have these characteristics:

• Logically well-structured

• Concise and brief

• Clear requirements

• Appropriate length

Experiments reveal that both GPT-3.5-turbo and GPT-4 outperform another
candidate model i.e., Text-davinci-003, on similar prompts. Compared to GPT-
3.5-turbo, GPT-4 can understand the prompt better, but still has its limitations
and does not achieve absolute perfection. Concerning the pricing of GPT models,
it is based on the number of tokens for both input and output, and GPT-4
is approximately 30 times more expensive than GPT-3.5-turbo. Consequently,
GPT-3.5 was selected for its good performance and cost-effectiveness, with a cost
of less than 0.0002 USD for each request for storytelling in the demo.

5.2 Discussion of ClipCap

As the initial approach chosen to achieve the goals, ClipCap utilizes GPT-2 as
part of its model to have a strong understanding of textual data. However, it
failed to achieve expectations and was finally discarded even after a lot of ef-
fort. The reason why ClipCap failed has been briefly discussed in subsection
3.1.3. The most important reason is that the underlying image encoder, i.e.,
CLIP model, which was pre-trained on datasets of real-life situations and thus
is not well capable of retrieving information from historical maps, stays frozen
during training or fine-tuning. This could also explain why in the past, unlike
CLIP, ClipCap has only been fine-tuned on subsets of the COCO dataset (Lin
et al., 2014), e.g., Cafagna et al. (2023). Apart from this factor, a large, bal-
anced, expansive, and well-structured dataset, especially with clearly structured
and categorized ground truth captions, plays an important role in training the
ClipCap. This is due to the high variability in captions, particularly in terms
of topics and content descriptions of the map. When there is a vast diversity in
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captions but insufficient data within corresponding categories, the model will not
be able to establish a good connection between visual and textual information
and therefore not perform well in caption generations.

In preliminary experiments, ClipCap managed to generate correct captions with
an average character similarity of 80%. This might seem high, but in reality,
100% character similarity was rarely achieved (meaning that a generated caption
and corresponding ground-truth are equal). One has to also keep in mind that
similarity on the character level and semantic level are completely different. This
is why for CLIP, the accuracy was determined by pure string equality, which is
much more strict but also more clear and unambiguous. In addition, unlike the
test map sets used for CLIP, the ones for ClipCap were not guaranteed to be
balanced. This means that the average character similarity of 80% cannot truly
be seen as a "fair" or deterministic value but rather inflated.

GPT models were employed to automatically create ground-truth captions for
experiments. Even though GPT-4 is a powerful tool for understanding and gen-
erating sentences in natural language, it did not always follow all requirements
in the prompt, for example, punctuation marks, abbreviations, and repeated lo-
cation descriptions still occasionally appeared in the generated captions, which
required additional post-processing work before being put into use. Moreover, it
is also challenging to extract just keywords from map content without including
any additional contextual descriptions meanwhile efficiently categorizing them
into an appropriate number of categories. The balance between the diversity of
the ground truth data and the model’s generalization ability is difficult to main-
tain as well. Therefore, the CLIP model was subsequently adopted in the later
stages of the project.

5.3 Consequences

Based on the results presented in Chapter 4, the following can be said:

• The developed decision tree method, which combines keyword captions gen-
erated by fine-tuned CLIP models, is capable of describing historical maps
with respectable accuracy in a storytelling fashion.

• The fine-tuning process of CLIP is quite efficient and does not necessarily
require a huge dataset consisting of tens of thousands of maps to improve
the base CLIP model.

• The base CLIP model has much higher generalizability than ClipCap and
already performs better than random guessing.
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5.4 Limitations

The developed method, in its current state, can only be used for map storytelling
if the input map’s content can be described by the present caption category
classes. Meaning that the input map should for example not depict an area that
the fine-tuned models have never seen. If this is still the case, then the model will
check which of the already-known areas looks closest to the one in the input map
and output the area corresponding to the highest probability. Therefore, the main
limitation here is the limited number of fine-tuned classes per caption category.
This can be attributed to the available maps on David Rumsey Historical Map
Collection (Rumsey, David, and Cartography Associates, 2024) and the laborious
ground-truth caption process that made it challenging to create a balanced map
dataset. Especially for the Topic (Pictorial) category it would have been desirable
to have access to more easily classifiable pictorial maps. In addition, increasing
the number of test maps would have made the accuracy assessment more robust,
but it was already difficult to find more pictorial maps online corresponding to
any of the topic classes. This is why it was decided not to just add even more
topographic maps instead, to increase the test set, but to keep it at its current
size at which the map types are more or less balanced.

Moreover, six distinct CLIP models are now used to capture the crucial aspects
of map content. This method provides an efficient approach to extracting and
processing diverse map features. However, a potential drawback is the risk of
overlooking finer details and thus losing information in the map content, because
the focus is primarily on key aspects identified in advance. Prerequisite knowledge
about the map content is also needed for prediction as mentioned before.



Chapter 6

Conclusion and Outlook

In this project, the main objective was to explore and fine-tune GPT models for
map storytelling, where given a historical input map, the model should generate
a caption answering the four questions Where?, What?, When? and Why? (see
section 1.3). The results presented and discussed in chapters 4 and 5 show that
a method for map storytelling answering the above questions was successfully
developed. Provided that the content of the historical input map can be described
by the present caption category classes, the method is capable of describing it
with respectable accuracy while significantly outperforming the related state-of-
the-art captioning methods CLIP and ClipCap.

Potential future work could include finding ways to create a larger and more
diverse (by also taking advantage of other map collections) map dataset with
corresponding ground-truth captions more efficiently. Such a dataset, in com-
bination with the decision tree approach used in this project, would allow the
development of a way more powerful (historical) map captioning method, over-
coming the current limitations. In addition, this dataset can also provide an
opportunity to investigate the integration of various distinct models or to de-
velop just one more comprehensive CLIP model. The enhanced model can then
be employed to encode visual information from maps in ClipCap, facilitating the
effective generation of more complex stories with richer content and more details
in the future.
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Appendix A

Example Metadata

Figure 13: Example metadata from David Rumsey Map Collection
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Appendix B

Caption Classes

Caption Category Classes (Number of maps per class)

Map Type pictorial map (3’183), topographic map (1’334)

Area (Topographic)

europe (62), greece (56), eastern hemisphere (54), part
of italy (54), italy (51), part of germany (41), france
(40), middle east (36), iberian peninsula (34), part of
france (34), asia minor (29), germany (27), part of
greece (27), british isles (25), world (21), egypt (19),
india (18), asia (17), holy land (16), caucasus (12),
africa (11), netherlands (9), switzerland (7), americas
(6), south america (6), scandinavia (6), sri lanka (5)

Style

hand colored (469), hand colored with decorative ele-
ments and pictorial relief (224), pictorial relief (189),
hand colored with pictorial relief (125), engraved (86),
decorative elements and pictorial relief (39)

Century 19th century (711), 16th century (221), 17th century
(216), 18th century (186)

Area (Pictorial) world (210), united states (80)

Topic

flight network (81), news during world war 2 (76),
world war 2 (28), transport routes (18), tourist sights
(14), playing card (12), animals (11), satirical rep-
resentation (11), people (9), stamps (7), educational
drawings (6), food and agriculture (6), military (5)

Table 9: Overview of all classes per caption category. In brackets, the number of
maps per class.
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